
www.umbc.edu

CMSC201
Computer Science I for Majors

Lecture 17 – Classes and Modules
(Continued)

Prof. Jeremy Dixon

Based on slides from the book author, and previous iterations of the course

www.umbc.edu

Last Class We Covered
• More about “good quality” code
• Modules
• The import keyword

– Three different ways to import modules

• Classes
– Creating an instance of a class
– Vocabulary related to classes

www.umbc.edu

Any Questions from Last Time?

www.umbc.edu

Today’s Objectives
• To review the vocabulary for classes
• To better understand how constructors work
• To learn the difference between

– Data attributes
– Class attributes

• To explore special built-in methods and attributes

www.umbc.edu

Class Vocabulary

class student:
def __init__(self, name, age):

self.full_name = name
self.age = age

def get_age(self):
return self.age

_______ class _____ ______ ______

class ________
(or ________)class ______

www.umbc.edu

Class Vocabulary

class student:
def __init__(self, name, age):

self.full_name = name
self.age = age

def get_age(self):
return self.age

keyword class name current instance

constructor

class members
(or attributes)class method

www.umbc.edu

Creating Instances of a Class

www.umbc.edu

Constructor
• In order to use a class we have created, we

have to be able to create instances of it to use
• We can accomplish this using a special type of

method (i.e., a class function) called a
constructor
– Using it will allow us to “construct”

instances of our class

www.umbc.edu

__init__

• The constructor has a special name:
the word “init” with two underscores in
front of it, and two underscores in back
– This special name tells Python how to use it

• The __init__() method needs to be
contained inside our class
– It normally does initialization of the class data

members and other important things

www.umbc.edu

Constructor Example
• Here is an example constructor for student

class student:
def __init__(self, name, age, gpa):

self.name = name
self.age = age
self.gpa = gpa

• It takes in three arguments (plus self) and
initializes our data members with them

www.umbc.edu

Using a Constructor
• To use our constructor:

– Use the class name with () notation
– Pass in the arguments it needs
– Assign the results to a variable

test1 = student("Jane", 22, 3.2)

• Creates a new student object called test1

www.umbc.edu

Constructor Code Trace
• What happens when we call a constructor?

def main():
test1 = student("Jane", 22, 3.2)

def __init__(self, name, age, gpa):
self.name = name
self.age = age
self.gpa = gpa

www.umbc.edu

Constructor Code Trace
• What happens when we call a constructor?

def main():
test1 = student("Jane", 22, 3.2)

def __init__(self, name, age, gpa):
self.name = name
self.age = age
self.gpa = gpa

age = 22
name = "Jane"

gpa = 3.2

name: "Jane"

age: 22

gpa: 3.2

www.umbc.edu

Constructor Code Trace
• What happens when we call a constructor?

def main():
test1 = student("Jane", 22, 3.2)

def __init__(self, name, age, gpa):
self.name = name
self.age = age
self.gpa = gpa

age = 22
name = "Jane"

gpa = 3.2

Creates
and returns a

student object

Notice that all of the local
variables in __init__

disappeared!

www.umbc.edu

The self Variable
• The self variable is the first parameter of

every single class method – we must use it!
– But we don’t explicitly pass it in
– Python implicitly passes it in (for us!)

• Calling the constructor:
test1 = student("Jane", 22, 3.2)

• The constructor definition:
def __init__(self, name, age, gpa):

www.umbc.edu

The self Variable
• The self variable is how we refer to the

current instance of the class
• In __init__, self refers to the object that

is currently being created

• In other methods, self refers to the instance
the method was called on

www.umbc.edu

Deleting an Instance
• Some languages expect you to delete instances

of a class after you are done with them
– Python is not one of those languages

• Python has automatic “garbage collection”
– It automatically detects when all of the references

to a piece of memory have gone out of scope
– Generally works pretty well

www.umbc.edu

Attributes

www.umbc.edu

Attributes
• There are two types of attributes:

1. Data attributes
– Also called instance variables

2. Class attributes
– Also called class variables

www.umbc.edu

Data Attributes
• Data attributes

– Variables are owned by a particular instance
– Each instance has its own value for each attribute

test1 = student("Jane", 22, 3.2)
name: "Jane"
age: 22
gpa: 3.2

test2 = student("Adam", 19, 1.9)
name: "Adam"
age: 19
gpa: 1.9

test1’s attributes

test2’s attributes

www.umbc.edu

Data Attributes
• Data attributes are created and initialized

by the class’s __init__ method

• Inside the class, data attributes must have
“self.” appended to the front of them

def setAge(self, age):
if age > 0:

self.age = age
else:

self.age = 1

www.umbc.edu

Class Attributes
• Class attributes are owned by the whole class
• All instances share the same value for it

– When any instance of the class changes it, it
changes for all instances of the class

• Class attributes are often used for:
– Class-wide constants
– Counting how many instances of a class exist

www.umbc.edu

Class Attributes
• Class attributes must be defined within the

class definition, but outside any methods
class student:

MAX_ID_LENGTH = 4 # constant
numStudents = 0 # counter

def __init__(self, name, age, gpa):
__init__ method definition...

rest of class definition

www.umbc.edu

Class Attributes
• Since there is one of these attributes per class

and not one per instance, they’re accessed via
a different notation:

self.__class__.name
– Use the actual keyword “class”
– This is the safest way to access these attributes

def increment(self):
self.__class__.numStudents += 1

www.umbc.edu

Data vs. Class Attributes Example
class counter:

class attribute
overall_total = 0

def __init__(self):
data attribute
self.my_total = 0

def increment(self):
self.my_total += 1
self.__class__.overall_total += 1

www.umbc.edu

Data vs. Class Attributes Example

classroomOne = counter()
classroomTwo = counter()
classRoomOne.increment()
classroomTwo.increment()
classroomTwo.increment()
print("one's total", classroomOne.my_total)
print("class total", classroomOne.__class__.overall_total)
print("two's total", classroomTwo.my_total)
print("class total", classroomTwo.__class__.overall_total)

one's total 1
class total 3
two's total 2
class total 3

www.umbc.edu

Special Built-In Methods

www.umbc.edu

Built-In Methods
• Python automatically includes many methods

that are available to every class
– Even if you don’t explicitly define them

• These methods define functionality triggered
by special operators or usage of that class

• All built-in methods have double underscores
around their name: __init__

www.umbc.edu

Special Methods
• Here are some special methods and their uses:

__init__
– The constructor for the class
– Often initializes the data members

__repr__
– Defining how to “turn” an instance into a string
– Used whenever we call print() with an instance

www.umbc.edu

More Special Methods
• There are additional special methods, including

ones that let you define how these work:
– Comparison
– Assignment
– Copying
– len()
– Using [] notation like a list
– Using () notation like a function

www.umbc.edu

Special Built-In Attributes

www.umbc.edu

Built-In Attributes
• Python also has special attributes that exist for

all classes

__class__
– Gives a reference to the class from any instance
– We already use this for accessing class attributes

__module__
– Gives a reference to the module it’s defined in

www.umbc.edu

The __doc__ Attribute
• We can also use documentation strings in our

class, and access them using __doc__
• To add documentation, use 3 double quotes

class student:
"""This is a class for a student"""
MAX_ID_LENGTH = 4
numStudents = 0

def __init__(self, name, age, gpa):
"""Constructor for a student""“
constructor definition...

www.umbc.edu

The __doc__ Attribute
• To access the documentation, use __doc__

test1 = student("Jane", 22, 3.2)

print(test1.__doc__)
print(test1.__init__.__doc__)

This is a class for a student
Constructor for a student

www.umbc.edu

The dir() Function
• If you want a list of all the available attributes

and methods, you can call the dir()
function on any instance of the class:
dir(testStudent)
['MAX_ID_LENGTH', '__class__', '__delattr__', '__dict__',
'__dir__', '__doc__', '__eq__', '__format__', '__ge__',
'__getattribute__', '__gt__', '__hash__', '__init__',
'__le__', '__lt__', '__module__', '__ne__', '__new__',
'__reduce__', '__reduce_ex__', '__repr__', '__setattr__',
'__sizeof__', '__str__', '__subclasshook__', '__weakref__',
'age', 'checkGraduate', 'getNumStudents', 'gpa', 'idNum',
'increment', 'name', 'numStudents', 'printStudent', 'setAge',
'setIDNum']

www.umbc.edu

If we have time…

www.umbc.edu

Any Other Questions?

www.umbc.edu

Announcements
• Midterm Survey (on Blackboard)

– Due by Friday, November 6th at 8:59:59 PM

• Project 1 is out
– Due by Tuesday, November 17th at 8:59:59 PM
– Do NOT procrastinate!

• Next Class: Inheritance

	CMSC201� Computer Science I for Majors��Lecture 17 – Classes and Modules�(Continued)
	Last Class We Covered
	Any Questions from Last Time?
	Today’s Objectives
	Class Vocabulary
	Class Vocabulary
	Creating Instances of a Class
	Constructor
	__init__
	Constructor Example
	Using a Constructor
	Constructor Code Trace
	Constructor Code Trace
	Constructor Code Trace
	The self Variable
	The self Variable
	Deleting an Instance
	Attributes
	Attributes
	Data Attributes
	Data Attributes
	Class Attributes
	Class Attributes
	Class Attributes
	Data vs. Class Attributes Example
	Data vs. Class Attributes Example
	Special Built-In Methods
	Built-In Methods
	Special Methods
	More Special Methods
	Special Built-In Attributes
	Built-In Attributes
	The __doc__ Attribute
	The __doc__ Attribute
	The dir() Function
	If we have time…
	Any Other Questions?
	Announcements

