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Computer Science I for Majors

Lecture 17 – Classes and Modules
(Continued)

Prof. Jeremy Dixon

Based on slides from the book author, and previous iterations of the course
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Last Class We Covered
• More about “good quality” code
• Modules
• The import keyword

– Three different ways to import modules

• Classes
– Creating an instance of a class
– Vocabulary related to classes
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Any Questions from Last Time?
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Today’s Objectives
• To review the vocabulary for classes
• To better understand how constructors work
• To learn the difference between

– Data attributes
– Class attributes

• To explore special built-in methods and attributes
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Class Vocabulary

class student:
def __init__(self, name, age):

self.full_name = name
self.age = age

def get_age(self):
return self.age

_______ class _____ ______ ______

_________

class ________
(or ________)class ______
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Class Vocabulary

class student:
def __init__(self, name, age):

self.full_name = name
self.age = age

def get_age(self):
return self.age

keyword class name current instance

constructor

class members
(or attributes)class method
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Creating Instances of a Class
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Constructor
• In order to use a class we have created, we 

have to be able to create instances of it to use
• We can accomplish this using a special type of 

method (i.e., a class function) called a 
constructor
– Using it will allow us to “construct” 

instances of our class
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__init__

• The constructor has a special name:
the word “init” with two underscores in 
front of it, and two underscores in back
– This special name tells Python how to use it

• The __init__() method needs to be 
contained inside our class
– It normally does initialization of the class data 

members and other important things
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Constructor Example
• Here is an example constructor for student

class student:
def __init__(self, name, age, gpa):

self.name = name
self.age = age
self.gpa = gpa

• It takes in three arguments (plus self) and 
initializes our data members with them
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Using a Constructor
• To use our constructor:

– Use the class name with () notation
– Pass in the arguments it needs
– Assign the results to a variable

test1 = student("Jane", 22, 3.2)

• Creates a new student object called test1
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Constructor Code Trace
• What happens when we call a constructor?

def main():
test1 = student("Jane", 22, 3.2)

def __init__(self, name, age, gpa):
self.name = name
self.age = age
self.gpa = gpa
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Constructor Code Trace
• What happens when we call a constructor?

def main():
test1 = student("Jane", 22, 3.2)

def __init__(self, name, age, gpa):
self.name = name
self.age = age
self.gpa = gpa

age = 22
name = "Jane"

gpa = 3.2

name:  "Jane"

age:   22

gpa:   3.2
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Constructor Code Trace
• What happens when we call a constructor?

def main():
test1 = student("Jane", 22, 3.2)

def __init__(self, name, age, gpa):
self.name = name
self.age = age
self.gpa = gpa

age = 22
name = "Jane"

gpa = 3.2

Creates 
and returns a 

student object

Notice that all of the local 
variables in __init__

disappeared!
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The self Variable
• The self variable is the first parameter of 

every single class method – we must use it!
– But we don’t explicitly pass it in
– Python implicitly passes it in (for us!)

• Calling the constructor:
test1 = student("Jane", 22, 3.2)

• The constructor definition:
def __init__(self, name, age, gpa):
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The self Variable
• The self variable is how we refer to the 

current instance of the class
• In __init__, self refers to the object that 

is currently being created

• In other methods, self refers to the instance 
the method was called on
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Deleting an Instance
• Some languages expect you to delete instances 

of a class after you are done with them
– Python is not one of those languages

• Python has automatic “garbage collection”
– It automatically detects when all of the references 

to a piece of memory have gone out of scope
– Generally works pretty well
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Attributes
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Attributes
• There are two types of attributes:

1. Data attributes
– Also called instance variables

2. Class attributes
– Also called class variables
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Data Attributes
• Data attributes

– Variables are owned by a particular instance
– Each instance has its own value for each attribute

test1 = student("Jane", 22, 3.2)
name: "Jane"
age:  22
gpa:  3.2

test2 = student("Adam", 19, 1.9)
name: "Adam"
age:  19
gpa:  1.9

test1’s attributes

test2’s attributes
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Data Attributes
• Data attributes are created and initialized 

by the class’s __init__ method

• Inside the class, data attributes must have 
“self.” appended to the front of them

def setAge(self, age):
if age > 0:

self.age = age
else:

self.age = 1
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Class Attributes
• Class attributes are owned by the whole class
• All instances share the same value for it

– When any instance of the class changes it, it 
changes for all instances of the class

• Class attributes are often used for:
– Class-wide constants
– Counting how many instances of a class exist
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Class Attributes
• Class attributes must be defined within the 

class definition, but outside any methods
class student:

MAX_ID_LENGTH = 4   # constant
numStudents = 0     # counter

def __init__(self, name, age, gpa):
# __init__ method definition...

# rest of class definition



www.umbc.edu

Class Attributes
• Since there is one of these attributes per class 

and not one per instance, they’re accessed via 
a different notation:

self.__class__.name
– Use the actual keyword “class”
– This is the safest way to access these attributes

def increment(self):
self.__class__.numStudents += 1
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Data vs. Class Attributes Example
class counter:

# class attribute
overall_total = 0

def __init__(self):
# data attribute 
self.my_total = 0

def increment(self):
self.my_total += 1
self.__class__.overall_total += 1
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Data vs. Class Attributes Example

classroomOne = counter()
classroomTwo = counter()
classRoomOne.increment()
classroomTwo.increment()
classroomTwo.increment()
print("one's total", classroomOne.my_total)
print("class total", classroomOne.__class__.overall_total)
print("two's total", classroomTwo.my_total)
print("class total", classroomTwo.__class__.overall_total)

one's total 1
class total 3
two's total 2
class total 3
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Special Built-In Methods
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Built-In Methods
• Python automatically includes many methods 

that are available to every class
– Even if you don’t explicitly define them

• These methods define functionality triggered 
by special operators or usage of that class

• All built-in methods have double underscores 
around their name: __init__
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Special Methods
• Here are some special methods and their uses:

__init__
– The constructor for the class
– Often initializes the data members

__repr__
– Defining how to “turn” an instance into a string
– Used whenever we call print() with an instance
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More Special Methods
• There are additional special methods, including 

ones that let you define how these work:
– Comparison
– Assignment
– Copying
– len()
– Using [] notation like a list
– Using () notation like a function
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Special Built-In Attributes
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Built-In Attributes
• Python also has special attributes that exist for 

all classes

__class__
– Gives a reference to the class from any instance
– We already use this for accessing class attributes

__module__
– Gives a reference to the module it’s defined in
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The __doc__ Attribute
• We can also use documentation strings in our 

class, and access them using __doc__
• To add documentation, use 3 double quotes

class student:
"""This is a class for a student"""
MAX_ID_LENGTH = 4
numStudents = 0

def __init__(self, name, age, gpa):
"""Constructor for a student""“
# constructor definition...
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The __doc__ Attribute
• To access the documentation, use __doc__

test1 = student("Jane", 22, 3.2)

print(test1.__doc__)
print(test1.__init__.__doc__)

This is a class for a student
Constructor for a student
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The dir() Function
• If you want a list of all the available attributes 

and methods, you can call the dir()
function on any instance of the class:
dir(testStudent)
['MAX_ID_LENGTH', '__class__', '__delattr__', '__dict__', 
'__dir__', '__doc__', '__eq__', '__format__', '__ge__', 
'__getattribute__', '__gt__', '__hash__', '__init__', 
'__le__', '__lt__', '__module__', '__ne__', '__new__', 
'__reduce__', '__reduce_ex__', '__repr__', '__setattr__', 
'__sizeof__', '__str__', '__subclasshook__', '__weakref__', 
'age', 'checkGraduate', 'getNumStudents', 'gpa', 'idNum', 
'increment', 'name', 'numStudents', 'printStudent', 'setAge', 
'setIDNum']
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If we have time…
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Any Other Questions?
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Announcements
• Midterm Survey (on Blackboard)

– Due by Friday, November 6th at 8:59:59 PM

• Project 1 is out
– Due by Tuesday, November 17th at 8:59:59 PM
– Do NOT procrastinate!

• Next Class: Inheritance
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